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Abstract 
 
We use GPS data from the well-recorded 2004 Mw6.0 Parkfield Earthquake to further 
probe uncertainties in kinematic models.  We find that the inversion for this data set is 
poorly resolved at depth and near the edges of the fault. In such an underdetermined 
inversion, it is possible to obtain spurious structure in poorly resolved areas.  We 
demonstrate that a nonuniform grid with grid spacing matching the local resolution 
length on the fault outperforms small uniform grids, which generate spurious structure in 
poorly resolved regions, and large uniform grids, which lose recoverable information in 
well-resolved areas of the fault.  The nonuniform grid correctly averages out large-scale 
structure in poorly resolved areas while recovering small-scale structure near the 
surface. 
   
In addition to probing model uncertainties in earthquake source models, we also 
examine the effect of model uncertainty in Probabilistic Seismic Hazard Analysis 
(PSHA).  While methods for incorporating parameter uncertainty of a particular model 
in PSHA are well-understood, methods for incorporating model uncertainty are more 
difficult to implement due to the high degree of dependence between different 
earthquake-recurrence models.  We show that the method used by the 2002 Working 
Group on California Earthquake Probabilities (WGCEP-2002) to combine the 
probability distributions given by multiple earthquake recurrence models has several 
adverse effects on their result.  In particular, WGCEP-2002 uses a linear combination of 
the models which ignores model dependence and leads to large uncertainty in the final 
hazard estimate. Furthermore, model weights were chosen based on data, which has the 
potential to systematically bias the final probability distribution.  The weighting scheme 
used in the Working Group report also produces results that depend upon an arbitrary 
ordering of models. In addition to analyzing current statistical problems, we present 
alternative methods for rigorously incorporating model uncertainty into PSHA. 
 
 
I. Model Uncertainty in Probabilistic Seismic Hazard Analysis 
 
The goal of probabilistic seismic hazard analysis (PSHA) is to provide a quantitative 

estimate of the likelihood of exceeding a given threshold of earthquake-caused ground 

motions in a specific region during a given time period [SSHAC, 1997]. PSHA is 

characterized by deep uncertainty, for not only is there parameter uncertainty regarding 

the values of various model inputs needed to estimate hazard, there is also model 

uncertainty. This type of uncertainty relates to the statistical signatures for hazard, that 

is, how best to represent the earthquake renewal process in a recurrence model. While 

methods for incorporating parameter uncertainty are widely used, model uncertainty is 

less rigorously incorporated [Aposolakis, 1995]. Nevertheless, it is prevalent in PSHA 

and must be handled properly.   

 

The 2002 Working Group on California Earthquake Probabilities (WGCEP-2002, or 

more concisely, WG02) differed from previous reports in that an attempt to quantify and 



incorporate model uncertainty was made. Unlike previous consensus reports in 1988, 

1990, and 1995 [WGCEP, 1990a, b, 1995], in which a single model was agreed upon, 

the WG02 report [WGCEP, 2003] used multiple models to generate the 2002 forecast. 

Model uncertainty was incorporated by taking a linear combination of the probability 

distributions given by several different models. Model uncertainty comprises a large 

portion of the total uncertainty in the WG02 forecast. 

 
A.  Brief Background of Previous Working Group Methodology 

The 2002 Working Group on California Earthquake Probabilities (WG02) incorporated 
model uncertainty by taking a linear combination of the probability distributions given 
by several different models.   While this is a laudable first step, such a methodology is 
strictly correct when one and only one model is correct, and the weight given that model 
is the probability that it is the correct model.  In fact this is a very strict condition, and it 
is a rare case when it is satisfied.  What is more likely is that each model is a different 
simplification of reality, so that the probability that a given model is correct is near zero.   
As the models are not collectively exhaustive, the probability weights will not sum to 
one.  In particular, ignoring dependence between models leads to large uncertainties.  
Model uncertainty is indeed a large portion of the uncertainty in the WG02 forecast. 
 
The Working Group on California Earthquake Probabilities (WGCEP) used five models 
to estimate earthquake probability in their report on earthquake hazards in the San 
Francisco Bay Region [WGCEP, 2003]. The first of these models, the Poisson Model, 
assumes that earthquakes randomly occur with a time-independent probability. This 
model has only one parameter, , the average rate of earthquake occurrence. The second 
model, the Empirical Model, is also a one-parameter Poisson-type model, but with a 
different value of . While in the Poison Model background seismicity is taken to be the 
long-term, historical rate of earthquake occurrence, in the Empirical Model 
[Reasenberg, 2003], post-1906 seismicity is used for . As recent seismicity in the San 
Francisco Bay Area is lower than the historical rate, the Empirical Model predicts lower 
probabilities than the Poisson Model. 
 
The third model, the Brownian Passage Time (BPT) model [Matthews et al., 2002; 
Kagan and Knopoff, 1987], uses two parameters to compute risk:  and the aperiodicity 
of events . The probability density for an event as a function of time t since the last 
event is given by 
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Note that the probability density is zero at t = 0, as a new earthquake is thought unlikely 
until stress reaccumulates on the fault segment. When  = 0, earthquake occurrence is 
periodic, and as  approaches infinity, earthquake occurrence approaches a Poisson 
process. The next model, the BPT-step model, is a BPT model that also incorporates the 
effects of stress interactions from events on nearby faults.  This interaction is 
incorporated into the model by a “clock change” – that is, changing the value of t in 
Equation 1. 
 



The final model is the Time-Predictable Model [Shimazaki and Nakata, 1980]. It is used 
only for the San Andreas Fault segment by the working group. This model uses the slip 
in the last earthquake, coupled with the slip rate of the fault segment, to calculate the 
expected time of the next rupture. The fault is expected to rupture once all of the strain 
released in the last earthquake has reaccumulated on the fault.  
 
Each of the above models employs different data to estimate earthquake hazard, and 
each of them has different assumptions as to what controls risk. Consequently, each of 
these models gives a different prediction for the level of earthquake hazard in the San 
Francisco Bay Area. Also, as there are uncertainties in the inputs in these models, each 
of these models has its own associated uncertainty. The predictions and associated 
uncertainties for each model are shown in Figure 1a. 
 
Given all these different models and different predictions, what is the true earthquake 
risk and uncertainty for the San Francisco Bay Region?  This issue arises broadly in 
hazard analysis.  Each model gives a different probability distribution.  The problem is 
how to combing the probability distributions from different models into a single 
probability distribution function that best represents true earthquake risk. 
 
Not knowing or agreeing as to which model was best or most correct, but needing to 
arrive at one estimate of earthquake risk, the working group performed what is 
essentially a weighted averaging of the models. That is, they did a Monte-Carlo 
sampling of all of the weighted probability distributions for each model, so that the final 
answer is a function of not just the mean prediction for a given model, but the entire 
probability distribution given by that model. This weighting is further complicated by 
the fact that interaction between models was allowed, that is, one model could be in 
place on one fault, while another model could be describing another fault for a given 
Monte-Carlo run. We still refer to this as an “averaging”, since neglecting these 
interaction effects, the result of the weighted Monte Carlo sampling is a weighted 
average of the probability distributions produced by each model. 
 
B.  Analysis: Current Statistical Biases in PSHA 

The first step in providing a rigorous methodology to incorporate model uncertainty in 
PSHA is a critique of previous analyses.  Below we present a preliminary analysis which 
illustrates key issues and points towards opportunities to improve hazard estimates. 
 
For the case of earthquake-hazard models, does averaging make sense?  In fact, there is 
a fundamental problem assigning probabilities to different models. Averaging can be 
justified if one, and only one model describes the true mechanism for generating risk, 
and the weights used  



 
Figure 1.  From the WGCEP report [2003]. Distributions of the regional 

probability of a M 6.7 earthquake calculated using various probability models. a) 

Overlapping histograms show probability calculated in 3000 iterations using each 

of four models separately. The shape and width of each distribution reflects 

epistemic uncertainty in the choice of underlying models and parameters.  b) 

Corresponding distribution calculated in 10,000 iterations using the weighted 

combination of models shown in Figure 3. The broad shape of this distribution 

reflects the combination of distinct behaviors of the alternate models.  Additional 

mass near P=0.8 corresponds to realizations that employ the Time-Predictable 

model on the San Andreas Fault, not shown in (a). 
 
in the average reflect the probability that given model is this one “true model” [Morgan 
and Henrion, 1990]. However, this is in fact a very strict condition, and in most cases 
where risk is generated by the interaction of many risk factors in an unknown way, it 
will not be satisfied. What is more likely is that each model is a different simplification 
of reality, analyzing the effect of different factors in the mitigation of risk. Nonetheless 
averaging of probabilities produced by different models is practiced not just in the field 
of earthquake hazard estimation, but in climate-change studies as well [Lempert et al., 
2004].  Consider our case of earthquake risk. One model, for example, the Time-
Predictable Model, attempts to quantify the risk associated with the slip in the last 



earthquake. Another model, the Stress-Step model, makes predictions based on the stress 
shadows from previous earthquakes. Averaging the predictions given by these two 
models is not valid since it is unlikely that earthquakes are triggered only by the slip in 
the last earthquake or only by the stress shadows. In reality, one would expect that both 
of these factors are important in earthquake risk. The best prediction would use all 
available information to arrive at a prediction. 
 
To further demonstrate exactly why averaging models can be incorrect, consider the 
following example. Suppose we are trying to assess risk for a given region. This region 
has “risk factor A” and “risk factor B”, which could be any type of input used in a 
hazard model to make a prediction.  For example, these “risk factors” could be time 
since the last earthquake, recent seismicity, strain data, etc. We also have two models for 
earthquake occurrence on hand: Model A, which makes predictions for earthquakes 
based on risk factor A, and Model B, which makes predictions based on risk factor B. 
Based on the historical catalog and/or physical reasoning, Model A gives a risk of  for 
regions having risk factor A, and thus for the region in question. Similarly, Model B 
assigns a risk of  to the region. Now, as neither of these models is a perfect predictor,  
is not equal to . What is our best guess of earthquake risk? Should we average  and  
according to our personal opinion of the validity of the models? What can we say 
mathematically about the possible values for the true risk? 
 
In fact, without knowing how risk factors A and B interact, we can place no constraint 
on what the true risk is, even if both Model A and Model B describe how risk factors A 
and B affect earthquake risk perfectly. The Venn diagrams in Figure 2 illustrate this 
point. It is perfectly consistent with the information given that the probability of 
earthquake occurrence in this region is anywhere between 0% and 100%, regardless of 
the values of  and . Risk factors A and B could interact as shown in Figure 2b, so that 
the region has no risk, or as shown in Figure 2c, in which an earthquake is nearly 
guaranteed. If risk factors A and B are completely independent, risk is then given by 1  
(1 ) (1 ), which is greater than both  and . Many of the plausible values for risk 
can not be obtained by any average! 
 
Again, weighting models can be correct, given a strict condition: that one model, and 
only one, describes the true mechanism for generating risk. If this condition is in fact 
met (it is probably not met in earthquake hazard), we can weight each model by the 
probability that that model is the one correct model. However, the weights in the WG02 
model are not a measure of this. In fact, one of the parameters that experts used to 
weight the models was “the relative amount and quality of geological data on each fault 
(with more and better data generally favoring more weight on recurrence models).” 
Similarly, Freedman and Stark [2003] remark that the weights used in an earlier report 
are not truly priors at all. That is, they do not reflect the experts’ prior probability (initial 
belief) that a given model is correct. In fact, the weights the working group assigns to 
the various models are a function of the fault in question! Figure 3 shows the weights 
used for each of the seven faults in the study. Clearly, these weights do not reflect the 
probability that a given model is the correct simplification of reality, for we do not 
expect that the physics of earthquake genesis changes from fault to fault. 



 

 
Figure 2.  a) Model A calculates risk for the entire set shown 

having risk factor A. The smaller circle shows those members of 

the entire set that will in actuality have the hazardous event. Model 

A gives a risk of , which is equal to the percentage of the entire 

set that is in the smaller circle. Similarly, Model B calculates a risk 

of , which is proportional to the number of elements with Risk 

Factor B that are in the small blue circle. What is the risk for an 

element that has both Risk Factor A and Risk Factor B? It could be 

0%, as shown in b), or nearly 100%, as shown in c), depending on 

how the risk factors interact. d) In some situations it might be wise 

to predict that the risk factors are independent, giving a risk of 1  

(1 ) (1 ). In each of these cases, the true risk cannot be 

obtained by any average of  and , and thus, it is not correct to 

average the results of Model A and Model B. 
 
Furthermore, because the weights varied from fault to fault, it was not possible to have 
the same model in effect on each fault for a given Monte Carlo iteration. To mitigate this 
problem, the models were organized in the order shown in Figure 3. Then, for a given 
Monte Carlo iteration, a single random number between 0 and 1 determined which 
model will be in effect on each fault. The method can be seen graphically from Figure 3: 
a given random number determines the horizontal position on the graph. A vertical line 
drawn at that position specifies which model is employed on each fault. For example, if 
the random number is 0.6, Mt. Diablo uses the Poisson model, the San Andreas uses the 
BPT model, and the remaining faults use the BPT-Step model. This method has several 
truly bizarre outcomes: certain models can interact, while others, such as the Empirical 



model and the BPT model, will never both be used in the same iteration. Perhaps the 
most troubling result of this method, however, is that the ordering of the models changes 
the result. That is, the working group positioned first the Empirical Model, followed by 
the Poisson Model, BPT-Step Model, and BPT Model, and arranged the Time 
Predictable Model last, as shown in Figure 3. A different ordering of these five models, 
however, would lead to a different result for the combined hazard. This is troubling 
since the ordering is arbitrary.  
 

            
Figure 3.  From the WGCEP report [2003]. Division of weight assigned to 

each probability model for each fault, as determined by expert opinion. The 

Time-Predictable model was applied only to the San Andreas fault. 

 
At the root of this problem is the difference in model weights from fault to fault. Again, 
this arose because weights were based on the “relative amount and quality of geologic 
data” available for each fault. Weighting based on availability of data, however, can lead 
to systematic errors.  Certainly the data available does not determine which model is the 
correct model, as the true physics of earthquakes is not a function of what one is able to 
measure.  Hence it is incorrect to weight models based on this. To see how weighting 
based on data quality can lead to systematic errors, consider two faults, Fault A and 
Fault B. Suppose we also have two models of earthquake genesis, the Poisson Model 
and a recurrence model that gives low probabilities after earthquakes and higher 
probabilities after a seismic lull. Suppose Fault A has been active historically, so that 
data exists from past earthquakes. We might be apt to give the Poisson model a low 
weight for 
 
Fault A, as the recent seismicity and abundance of data seems to make the recurrence 
model a better fit. After all, we should be able to make better predictions than the 
Poisson model for Fault A since we have such an abundance of data. Now, suppose 
Fault B has been seismically inactive during the historical record.  We have little data, 
making it difficult to apply the recurrence model in this case, which requires information 
about past earthquakes. So we might be apt to give the Poisson Model a larger weight. 
But notice what we have done! The recurrence model would give a low probability for 



Fault A since there were recent earthquakes and a high probability for Fault B since 
there were not. In each case, we weighted the model that gave the lowest prediction the 
most. In this example, giving model weights based upon data availability systematically 
skewed the hazard estimates to the low side. 
 
C. Copulas 

 

Copulas are dependence models which are ideally suited to the task of combining 

distributions. They are often used to combine knowledge from different experts into a 

single probability distribution [Clemen et al., 2000; Jouini and Clemen, 2002]. The 

expert-aggregation problem is similar to that of the model aggregation problem. As with 

model information, expert knowledge is partially dependent, since experts share 

knowledge. It is not a matter of which expert is right and which is wrong; rather, each 

expert gives additional information (presumably a function of the knowledge that differs 

between experts). As this is very similar to the case of model uncertainty, copulas could 

be used to combine multiple probability distributions from individual models into a 

single probability distribution.   

 

Copulas are functions that combine univariate marginal distributions into multivariate 

distribution functions. A key theorem here is Sklar’s Theorem [Sklar, 1959], which 

states that given an n-dimensional distribution function Hn(x1, ..., xn) with marginal 

distributions h1(x1), ..., hn(xn), there exists a copula C such that  

Hn(x1, ..., xn) = C(h1(x1), ..., hn(xn)).    (2) 

Furthermore, if h1(x1), ..., hn(xn) are continuous, C is unique. 

 

Copulas thus combine the information from the marginal distributions (in this case, the 

individual model probability distributions) into a single distribution Hn. Consider two 

models which make a prediction based on different sets of parameters. If true hazard is 

not a function of one set of parameters or the other, but rather an albeit complicated 

function of both sets of parameters, then each model is giving information that should 

determine the final hazard. The final probability distribution for hazard should be a 

function of each model output. The copula is the function that combines the two 

probability distributions into one distribution.  From Sklar’s Theorem one can see that 

any multivariate distribution defines a copula. The choice of copula is a function of the 

dependence structure of the marginals, but not a function of the marginals themselves. 

Choosing the copula that correctly describes the dependence between two models is the 

most important part of this formulation. Clemen and Reilly [1999] discuss how to use 

expert opinion to this end. If the models are exchangeable in terms of their dependence, 

an Archimedian copula is ideal, as it treats the marginal distributions symmetrically 

[Jouini and Clemen, 2002]. For more flexibility, the multivariate normal copula can be 

used [Clemen and Reilly, 1999]. It encodes dependence using pairwise correlation 

coefficients, for example, Spearman’s  or Kendall’s  [Lehmann, 1966]. This can be 

ideal in situations where there is little data, for the statistical measures of dependence  

or  can be assessed with expert opinion. 

 

 



D. An Example Applying Copulas to Earthquake Recurrence Models 

 

Jouini and Clemen [2002] present a simple method using copulas in a Bayesian 

framework to combine multiple probability distributions from experts. We follow their 

method here to combine two distributions from the WG02 report: the probability 

distributions given by the Poisson and Empirical models.  Jouini and Clemen [2002] use 

a uniform prior distribution for the application of Bayes’ Rule. To calculate the 

likelihood function, they combine the individual expert probability distributions fi( ) 

using a family of copulas described by Frank [1979]. This family of copulas is indexed 

by a single parameter, Kendall’s  [Kendall , 1938].  For two independent and 

identically distributed pairs of random variables, Kendall’s  is defined as the probability 

of concordance minus the probability of discordance. The copula family of Frank [1979] 

can capture the full range of positive dependence from  = 0 (independence) to  = 1 

(perfect positive dependence). Furthermore, Jouini and Clemen assume for simplicity 

that given a random median Mi given by the ith marginal, the marginal distributions are 

only dependent through their estimation errors  Mi.  Under these assumptions, the 

posterior probability distribution is proportional to 

c(1  F1( ), ..., 1  Fn( )) f1( ) . . . fn( ),    (3) 

where c is the copula density function, and Fi is the cumulative probability distribution 

generated from the ith marginal fi. 

 

An example of this copula-based method is applied to the Poisson and Empirical 

probability distributions from the WG02 report and shown in Figure 4. We fit the 

individual probability distributions from Figure 1a with Gaussian distributions. Recall 

that each statistical model produces a distribution of values for the probability of an 

earthquake of magnitude 6.7 of greater. The width of the Gaussian that we fit is 

determined by the parameter uncertainty of the individual models. In Figure 4a, we 

show the regional probability distributions given by the Poisson and Empirical Models, 

along with an equally weighted average of the two in black. This is analogous to the 

WG02 methodology. Figures 4b, c, and d show examples of the copula-based 

aggregation for three different levels of dependence. Figure 4b shows an aggregation 

where the two models are assumed to be independent (  = 0). In this case, Frank’s 

copula reduces to the independence copula C = f1f2. If the two models are independent, 

then together they provide the most information, and the variance in the combined 

distribution is as small as possible. Higher levels of dependence result in more variance, 

as more weight is added to regions where the two distributions differ. Large values of 

Kendall’s  result in a bimodal combined distribution (Figure 4d). In the case of two 

Gaussian marginals with equal variance, the combined distribution would be symmetric. 

In general, Frank’s copulas give more weight to the marginal with less variance, and 

thus the Empirical model is given more weight in the aggregated distributions in this 

example. 

 

The copula-based aggregations shown in Figure 4b, c, and d do not assume that the 

Poisson and Empirical models are mutually exclusive. Rather, they treat both models as 

marginal distributions. The Poisson Model is a marginal distribution for historical 

seismicity and the Empirical Model is a marginal distribution for post-1906 seismicity. 



The copula is the function that combines the two marginals into the bivariate probability 

density. 

 

          
Figure 4. Combining the Poisson and Empirical Model with an 

equally weighted linear combination (a) leads to quite different 

results than a using a copula-based aggregation method (b-d). If the 

two models are independent, Kendall’s _ equals zero and our copula 

reduces to the independence copula. This aggregation has the least 

variance (b). If we assume more dependence between the input 

models, then there is less total information. As we expect, in that 

case the combined model has higher variance, as shown (c and d). 

 

 

The above approach can easily be generalized to incorporate more than two models. For 

each pair of models, one pairwise correlation coefficient is needed to completely define 

the copula from this particular family. Expert opinion could easily be used to this end. 

The main drawback of this formulation is that the answer is highly dependent on the 

type of dependence structure between the models, and thus on the copula chosen. 

Archimedian copulas, which treat the dependence between the marginal distributions 

symmetrically, are certainly the easiest to implement. The copulas we use here from 

Frank [1979] are members of this class.  Modeling complex dependence structures, 



however, requires a more sophisticated analysis. To this end, Clemen and Reilly [1999] 

discuss methods using the copula underlying the multivariate normal distribution. In 

addition, MacKenzie [1994] develops a class of copulas with even more flexibility. 

 

Treating the model weights as probabilities (as a linear combination does) is problematic 

because the weights are not mutually exclusive or collectively exhaustive. Copulas 

provide a way to combine multiple models without abandoning probabilism. 

 
II. Uncertainty in Earthquake Source Models 

 
A. Resolution of GPS Data from the 2004 M6.0 Parkfield Earthquake 
 
 Given a linear inverse problem, the resolution matrix R=G

-g
G is a function of the 

Green’s function G and the generalized inverse G
-g

.   If the inversion has perfect 

resolution, the resolution matrix will equal the identity matrix.  In practice, the rows of R 

give weighted averages of the model parameters [Menke, 1989].  The extent to which the 

weights along the diagonal elements of R “leak” into neighboring elements in each row 

gives a measure of the resolution of each model parameter.   

 

 
We found that even for a well-recorded earthquake such as the 2004 M6.0 

Parkfield earthquake, which was recorded by 13 near-field GPS stations, static GPS 
inversions are poorly resolved at depth and near the edges of the fault.  Figure 5 shows 
the on-diagonal elements of the resolution matrix mapped onto the fault plane.  In poorly 
resolved areas of the fault, slip is poorly constrained spatially, which can lead to artifacts 
at depth.  The location of these artifacts, which often look very similar to asperities, is a 
function of the station locations and velocity structure. 
 
 
 
 

Figure 5. Diagonal elements of the resolution matrix for the GPS 

data from the 2004 Mw6.0 Parkfield Earthquake plotted on their 

corresponding subfaults.  Resolution is poor at depth and near the 

edges of the fault.  



B. Inversion of Parkfield GPS Data 
 
Formulating the inverse problem in a way that is severely underdetermined can lead to 

spurious structure in the final model. In the inversion of Parkfield GPS data, the 

resolution is highly spatially variable, with a much smaller resolution length near the top 

and center of the fault plane. We can improve the model resolution by making the 

subfaults larger in poorly resolved areas. A nonuniform grid with subfaults (grid cells) 
that match the local resolution length on the fault plane simultaneously maximizes the 
recoverable information in well-resolved areas of the fault while avoiding spurious 
structure in poorly resolved areas. 

 

 
We performed a traditional inversion of the Parkfield GPS data on a uniform grid and 
compared this result to an inversion performed on the nonuniform grid shown in Figure 
6d.  Figures 7a and 7b show the slip model from the uniform-grid inversion and the 
associated perturbation error from a Monte Carlo sampling of the errors in the GPS data.  
The inversion on the nonuniform grid, as shown in Figure 7c, captures the resolution 
error in the gridding of the fault plane.  In our view, the nonuniform-grid inversion of 
the Parkfield GPS data is superior because it assesses both resolution and perturbation 
errors. In addition, it is less likely to contain artifacts because the larger subfaults at 
depth limit the number of free parameters.  

Figure 6. We generated data from a synthetic slip model (a checkerboard 
test) shown in (a) and inverted the data onto three different grids. b) With a 
small, uniform grid, spurious structure is generated at depth. c) With a 
larger uniform gridding, structure near the surface is lost and spurious 
structure is again generated at depth in part because the large subfaults near 
the surface are removing structure that is within the resolution length of the 
problem. d) With a nonuniform grid with spacing that approximates the 
local resolution length on the fault plane, structure is adequately recovered 
in well-resolved portions of the fault and spurious slip is avoided in poorly 
resolved areas.  



 

 
 
C. Two-Step Inversion with Strong-Motion Data 
 
We constrained the final slip in an inversion of strong-motion data to match the final slip 
given by the GPS data, within the error bounds.  The GPS inversion of the regular grid 
does not place enough slip near the hypocenter to satisfy strong-motion stations to the 
southeast.  One might think that this suggests an inconsistency between the GPS and 
strong-motion data, but in fact the GPS inversion on the irregular grid is consistent with 
the strong motion data.  The non-uniform grid allows us to capture resolution error, and 
when this is taken into account, the two datasets agree. This confirms our view that the 
nonuniform grid produces more reliable results with fewer artifacts.  The results of the 
two-step inversion are shown in Figure 8. 
 
 
 
 

Figure 7. Inversion of Parkfield GPS data on a regular grid (a), and on an 

irregular grid (c), with associated perturbation errors found via Monte Carlo 

sampling of GPS errors (b and d). Both inversions give similar fits to the data 

with a variance reduction of 89-90%. 



                  
 
 
 
 
 
 
D. Resolution of Strong-Motion Data 
 
Strong-motion data has the ability to see slip deeper than static data because the static 
field decays faster with source-to-receiver distance [Aki and Richards, 2002].  Synthetic 
tests of different data types confirm this (e.g., [Delouis et al., 2002]).  However, strong-
motion data is further complicated by rupture time, which adds a strong nonlinearity to 
the inverse problem.  We linearized the strong-motion inversion about the fiinal rupture 
times determined by a nonlinear simulated annealing algorithm in order to investigate 
the resolution and covariance of the model. 
 
Model vectors that correspond to small singular values are unstable to data 
perturbations. In Figure 9 we plot the distribution of singular values for the GPS 
inversion and for the linearized strong-motion inversion.  Even though this linearized 
version of the strong-motion inversion is overdetermined, many of the model parameters 
(particularly at depth) are unstable, and thus very sensitive to data perturbations. 
 

Figure 8. Inversion of strong-motion GPS data without any static-field 

constraint [Liu et al., 2006] (a), and with the addition of a final-slip 

constraint derived from the GPS data inverted on a nonuniform grid (b). 

The addition of GPS data results in a more compact final slip distribution. 



 
 
 
 
 
 
 
 
 
The log of the model covariance matrix, shown in Figure 10, shows that parameters at 
depth are far more sensitive to data perturbations than shallower parameters.  This is 
important because a major source of perturbation error in strong-motion inversions is 
due to Green’s function errors. Strong-motion inversions of the dynamic wavefield are 

more sensitive to the velocity structure than are static inversions [Wald and Graves, 

2001].  Errors in the Green’s function due to incorrect velocity structure or fault location 

are highly nonlinear, and can change the final slip model significantly [Das and 

Suhadolc, 1996; Sekiguchi et al., 2000]. A thorough quantification of errors in kinematic 

inversions will allow for the determination of robust features in the models, which will 

allow researchers to draw firmer conclusions from this information. 
 

 
 
 
 

Figure 10. The model covariance, which shows how sensitive 

model parameters are to perturbations in the data, is shown plotted 

onto the fault plane for a linearized strong-motion inversion. 

Figure 9. Distribution of singular values for the GPS inversion (red) 

and for a linearized strong-motion inversion (blue).  The strong-

motion inversion is not technically underdetermined, although many 

of the singular values are near zero, which means some slip vectors 

are unstable. 
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